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Orientation relations, interface (habit plane) orientations, and shape changes have been computed by 
martensite theory for the crystal-structural transformation NaCl-type (f.c.c.)--+ CsCl-type (primitive 
cubic), especially in alkali halides. The lattice correspondence used involves contraction along the three- 
fold axis of a primitive rhombohedron of f.c.c. For the matrix analysis a computer program was 
written in FORTRAN. Mathematical solutions were obtained using two lattice-invariant shears based 
on slip and one based on transformation twinning. There are three types of solution. Within each of the 
three types multiplicity due to symmetry leads to 24 variants. Possible habit planes are near to {T11 }~, 
{210}1 and {310}~. Shape changes are large. Predictions agree with observations within experimental 
error. As the principles applied need not exclude some changes of stoichiometry, they may be relevant 
to topotaxy. 

1. Introduction 

Transformation between the NaC1 and CsC1 struc- 
tures provides a test of the magnitude of structure 
change that can proceed martensitically in ionic crys- 
tals. Elucidation of the mechanism may also be relevant 
to topotactic reactions between compounds structur- 
ally related to these. Transformations between these 
structures in the alkali halides at normal or high pres- 
sure are also of some technological interest. The trans- 
formation of the NaCI to the CsC1 structure involves 
a change of first coordination, from 6 to 8, associated 
in all known examples with a large volume change, 
A V/Vcscl = 17 %. Martensite theory, which has mainly 
been applied to alloys, should facilitate description of 
many structural changes in macroscopic non-metallic 
crystals, and have special value when there is a large 
change of lattice. Recent experiments by Fraser & 
Kennedy (1972) and Livshitz, Ryabinin, Larionov & 
Zverev (1969) indicate that, under some circumstances, 
the transformation NaCl-type ~ CsCl-type is indeed 
martensitic. Such experiments provide some data 
against which to compare predictions, which them- 
selves can serve as a guide to the interpretation of ob- 
servations. 

The present work uses martensite theory to predict 
orientation relations, interface orientations and shape 
changes in martensitic transformation from the NaC1 
structure to the CsC1 structure. The analysis is similar 
for a series of salts because the ratios of the lattice 
parameters are similar. Results are presented for CsC1, 
NHaCI, NH4Br and NH4I, and also for a sufficient 
range of ratio of lattice parameters to include KC1 and 
other alkali halides which transform under pressure. 
All these compounds have the NaC1 structure in phase 
I and the CsC1 structure in phase II. 

2. Theory 

2.1 General principles 
An introduction to martensite theory is given by 

Kelly & Groves (1970) and by Owen & Shoen (1971). 
Wayman (1964) and Christian (1965) provide more 
detailed accounts. Numerous reviews include a recent 
one by Bowles & Wayman (1972). Original statements 
of the theory are by Bowles & Mackenzie (1954), and 
Wechsler, Lieberman & Read (1953). These treatments 
were applied to metallic alloys. As a different lattice 
deformation has been used for this transformation, the 
mathematical analysis has been correspondingly rood- 
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ified. Fundamentals are stated here to provide a con- 
venient basis for discussion of ionic compounds. 

Martensite theory can be applied if a suitable cell 
can be converted into the new arrangement by a defor- 
mation. The cell, if primitive, may correspond to a co- 
ordination polyhedron as in the present example, in 
which the lattice deformation provides the required 
new arrangement of ions directly. Corresponding dis- 
placements of ions could occur across the boundary 
between parent and product without diffusive inter- 
change if the two lattices remain in register to within 
atomic dimensions over macroscopic distances. In gen- 
eral there is no plane of the product which so closely 
corresponds to any plane of the parent, but the ac- 
cumulating misfit on some plane of approximate fit can 
be corrected periodically either by change to another 
symmetry-equivalent deformation, or by an additional 
displacement in one direction. The former leads to 
transformation twinning (the twin plane being a mirror 
plane of the parent), the latter leads to propagation of  
a slip texture in the product. In either case, the effect 
averaged over many unit cells is a shear additional to 
the deformation which would suffice to transform the 
lattices and known as the 'lattice-invariant shear'. With 
this two-dimensional fit, a large volume change can be 
achieved by a component of expansion normal to this 
plane of average fit - the 'habit plane'. The combina- 
tion of deformations necessarily produces a displace- 
ment resulting in a shape change at the surface of the 
specimen. It may be significant for chemical reactions 
that these concepts do not exclude some change of 
stoichiometry. 

The data required are the lattice parameters, the 
symmetry relation involved in the lattice deformation 
(this underlies the transformation twinning), and the 
slip modes of the product. It is implied not that the 
product slips because of mechanical stress, (though it 
may do so subsequently), but that the slip modes cor- 
respond to relatively low-energy dislocations which 
may also operate in lattice-invariant displacements as 
the new structure is formed. 

2.2 The lattice correspondence and deformation 
A differential dilation (pure strain) which intercon- 

verts the f.c.c. NaC1 and primitive cubic CsCI struc- 
tures by relative contraction along a threefold axis 
(Fig. 1) was pointed out by Shoji (1931), who also sug- 
gested that this formal relation would not represent the 
probable orientation relation. Zintl & Brauer (1935) 
illustrated the structural relation. This was also Buer- 
ger's (1951, 1961) example of a dilatational transforma- 

tion, in which the higher energy barriers involved in 
diffusional rearrangement were avoided. In this pure 
strain there is a 40% contraction along a (111) direc- 
tion of the f.c.c, lattice accompanied by an expansion 
of 19 % in all directions normal to this, in typical sub- 
stances. That is, the principal distortions are r/3(l[[111]) 
=0"6 and r/l=r/2= 1"19. The lattice correspondence is 
here defined by: 

t 
Fig. 1. The lattice deformation. A contraction of approxi- 

mately 40% in a (111)~ direction accompanied by a per- 
pendicular expansion of approximately 19 % converts the 
primitive rhombohedron of the f.c.c, cell into a primitive 
cube. In so doing, the face-centred cell becomes rhombo- 
hedral with interedge angles of 70.53 and 109.47 ° ((100)~ --+ 
(111)H). The choice of axes is also shown. 

J 

J 

Fig. 2. {100} (110)~ transformation twins. Contraction axes 
in neighbouring volumes of NaC1 structure are related by 
reflexion in 1001 (----~ {110}H) planes. The ions on each side 
undergo mirror-related displacements such that the lattice 
is continuous across the 'twin' boundary, i.e. transformation 
'twinning' leads to a single-crystal product. The dashed lines 
denote the ( 111 ) contraction axes. 

Substance 
CsC1 
NH4C1 
NH4Br 
NH4I 

Table 1. Equilibrium temperatures, lattice parameters and deformations 

Lattice parameters 
T(°C) al(A) an(A) al/au 111 rl3 (o 

469 7"074 4.22a 1"67s 1-194 0"597 50°53 ' 
183.1 6"61 3"92 1"686 1"186 0"593 51039 ' 
137"2 6"86 4"09 1"67~ 1"192 0"596 51°4 ' 

-- 16 7"25 4"335 1"672 1"196 0"598 50042 ' 

67 ° 53" 
68025 ' 
6800 ' 
67°45" 
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Table 2. Solutions for the lattice-invariant (L.L) shear (10T)[010]n/(1]0)[110], 
L.I. shear angle 

in product 
(parent) (°) Rotation axis 
(a) CsC1, a,/a,x = 1"675 

(1) (a) 
- 14"96 [ -0"340 ] 40"2s 

( -  20"7o) 0"236 
0"910 I 
(b) 
0"939 ] 19"8o 

- 0"272 
- 0 " 2 1 1  I 

(2) (a) 
14"96 [ -0.236 ] 40"25 

(20.70) 0.340 
-0.910 

(b) 
0"272 ] 19"8o 

-0"939 
0"211 , 

(b) NH4CI, a,/an = 1.686 
(1) (a) 

- 1 4 " 2 3  [ -0"354 ] 38"88 
( -  19"73) 0"236 

0"905 , 
(b) 
0.939 ] 19"63 

-0.267 
0.219 , 

(2) (a) 
14"23 [ -0"236 ] 38"88 

(19"73) 0"354 
-0"905 l 

(b) 
0"267 ] 19"63 

-0"939 
0"219 I 

(C) NH4Br, a,/an = 1"677 
(1) (a) 

- -  14"8o [ -0"344 ] 39"94 
( -  20"48) 0"236 

0"909 I 
(b) 

0"939 ] 19.7, 
-0.271 
-0"213 i 

(2) (a) 
14"8o [ -0"236 ] 39"94 

(20"48) 0"344 
- 0"909 I 

(b) 
0.271 ] 19"76 

-0.939 
0.213 , 

Habit plane Direction of Magnitude of 
Rotation (o) indices shape strain shape strain 

( -  0"202 [ 0"751 ] 
-0"978 0"031 

0"057)I 0-590 , 

0.956 

(0.663 [ -0"503 ] 
-0.418 -0"780 

0.621), - 0.227 , 

0.956 

( -  0-978 [ 0-031 ] 
- 0.202 0.751 

0"057)I 0.590 , 

0.956 

(--0"418 [ --0-780 ] 
0"663 --0"503 
0"621)I -- 0"227 , 

0.956 

(-0.214 [ 0-720 ] 
- 0.976 0.040 

0"046)i 0.581 i 

0.927 

(0.663 [ -0.487 ] 
- 0-400 - 0.754 

0.633), - 0.228 , 

0.927 

(-0.976 [ 0 . 0 4 0 ]  
- 0.214 0.720 

0"046)1 0.581 , 

0.927 

(-0.400 [ - 0.754 ] 
0.663 - 0.487 
0"633)i - 0-228 1 

0.927 

(-0"204 [ 0"744 ] 
-0-977 0.033 

0"054)i 0.588 i 

0.949 

(0.663 [ -0.499 ] 
- 0.414 - 0.774 

0"623), - 0.227 , 

0.949 

(-0.977 [ 0.033 ] 
- 0.204 0.744 

0"054)i 0.588 i 

0.949 

( -  0"414 [ -0"774 ] 
0"663 -0"499 
0"623)I - 0"227 I 

0.949 

(d) NH4I, at~an = 1"672. Solutions identical to those for CsCI within the precision of these Tables. 



16 T H E  C R Y S T A L - S T R U C T U R A L  T R A N S F O R M A T I O N  N a C 1 - T Y P E - - +  C s C 1 - T Y P E  

Table 3. Solutions for lattice-invariant (L.I.) shear (110) [001]H/(100 ) [011]i 

L.I. shear angle 
in product  
(parent) (°) Rota t ion axis 
(a) CsC1, adau = 1"675 

(1) (a) 
-10"41 [ 0 " 2 5 2 ]  32"19 ( -0 "472  [ 0 " 2 7 1 ]  0"481 

(27"63) 0"888 - 0"087 - 0"393 
-0"385 1 0"877)1 0"062 l 

(b) 
[ 0 ~ ]  ~1~ ~04~ [ 0 ~ ]  048~ 

0.385 - 0 . 8 7 7  0.062 
- 0 - 8 8 8  l 0"087)1 0-393 l 

(2) (a) ~6~ [ 066~] ~0o ~04~ [ 0 ~ 1 ]  
(10"41) 0"073 - 0"087 - 0"393 

-0"741 l 0"877)1 -0"062  1 

(b) 

Habit  plane Direction of Magni tude of 
Rotat ion (°) indices shape strain shape strain 

[_0.668] 17.oo ~o472 [o.271] 
0"741 - 0"877 0"062 
0"073 I 0"087)1 0"393 l 

0"481 

0-481 

(b) NH4C1, adau = 1"686 
(1) (a) 

_,00~ [ .49] .~, ~04. [ 0~4] o4. 
(27"94) 0"887 - 0"069 - 0"391 

-0"389 I 0"876)i 0-071 I 

(b) 
[_.49]  .~4 ~04. [ 0 ~ 4 ]  o4. 

0"389 - 0"876 0"071 
-0"887 I 0"069h 0"391 l 

(2) (a) _~9~ [ 06~6] ~6~ ~04~ [ 0 ~ 4 ]  o4, 
(10"02) 0"058 - 0"069 0"391 

-0"734  l 0"876h 0"071 l 

(b) [06~6] ~6~ ~04, [0~4] o4, 
0.734 -0"876  0.071 

-0"058 l 0"069)1 0.391 i 

(c) NH4Br, al/an = 1.677 
(1) (a) 

- 10-3z [ 0 . 2 5 1 ]  32-27 ( - 0 " 4 7 4  [ 0 . 2 7 2 ]  0.481 
(27"70) 0.888 - 0"083 - 0"392 

-0"386  l 0-877)1 - 0 . 0 6 4  i 

(b) 
[ - 0 . 2 5 1 ]  32"27 (0.474 [ - 0 . 2 7 2 ]  0.481 

0.386 - 0.877 0.064 
- 0 . 8 8 8  i 0.083)1 0.392 l 

(2) (a) ~ o  [ 06~0] ~69~ ~04~4 [ 0 ~ ]  04~1 
(10"32) 0"070 - 0"083 - 0"392 

-0"739 l 0"877h -0"064  l 

(b) [06~0] 16,, ~04~4 [ 0 ~ ]  04~, 
0.739 - 0"877 0.064 

- 0 . 0 7 0  l 0"083h 0.392 l 

(d) NH4I, ax/an = 1.672. Solutions identical to those for CsC1 within the precision of these Tables. 



W. L. F R A S E R  AND S. W. K E N N E D Y  17 : 

where Xl and ~n are vectors in the Lc.c. and primitive 
cells respectively and Fig. 1 shows the choice of axes. 
The pure lattice strain alone corresponds to the orienta- 
tion relation [lll]xll[1 l l]n, (T100II(T01)n. 

The condition that parent and product remain in 
register implies that lengths and directions of vectors 
remain unaltered in the plane of contact: it is an in- 
variant plane when averaged over many unit cells. 
Vectors which are unaltered in length (though their 
positions are altered) by the pure lattice strain alone 
lie on the surface of a cone (Fig. 3). The semi-apex 
angles of initial (~o) and final (~p') cones are given by: 
tan ~p=[(1-r/2)/012- 1)] 1/2 and tan ~p' = (r/l/r/a) tan ~o. In 
moving from the initial to the final cone, any two 
vectors alter their included angle. The plane defined 
by them is therefore extended: no plane remains un- 
altered. The lattice-invariant shear accommodates the 
misfit for particular planes. 

2.3 The lattice-invariant sheaf? and total deformation 
The mathematical problem is to determine the 

amount of lattice-invariant shear (described by matrix 
P1) necessary to maintain an undeformed plane during 
the transformation, when the transformation of the 
lattice is achieved by the pure strain, described by 
matrix B. Since the undeformed plane is to remain 
common to the phases (invariant), the product must 
in general grow in an orientation different from that 
given by B: the difference is a rotation given by matrix 
R. The total shape strain P, which is an 'invariant- 
plane strain', is given by P=RP1B. It is convenient, 
however, to refer the lattice-invariant shear to the un- 
transformed parent lattice. The shear is then repre- 
sented by matrix P2, where P = RBP2. The lattice trans- 
formation produces the elements of P1 from P2. Gen- 
erally, there are two solutions for the amount of lat- 
tice-invariant shear: each of these corresponds to two 

Table 4. 2 % change of lattice parameter, lattice-invariant (L.I.) shear=(lO1) [010]n/(1T0 ) [110]~" NH4Br 

L.I. shear angle 
in product 
(parent) (°) Rotation axis Rotation (o) 
(a) adal,= 1.645 (+2% in an or --2% in a~) 

(1) (a) 
- -  16"99 [ -0"303 ] 44"02 

( -  23'3~) 0"236 
0"923 t 

(b) 
0"939 ] 20"1s 

- 0"286 
--0"191 i 

(2) (a) 
16"99 [ -0"236 ] 44"02 

(23"37) 0"303 
- 0"923 I 

: (b) 
[ 0 . 2 8 6 ]  20"ls 

-0-939 
0.191 t 

(b) adan=l'711 ( - 2 %  in an or +2% in ai) 
(1) (a) 

- - 1 2 " 7 5  [ -0"384 ] 36"11 
( - 17"74) 0"236 

0"893 I 

(b) 
0"937 ] 19"2~ 

-0"258 
0"236 l 

(2) (a) 
12"7s [ -0"236 ] 36"11 

(17"74) 0"384 
--0"893 I 

(b) 
0"258 ] 19"2~ 

--0"937 
0"236 x 

Habit plane Direction of Magnitude of 
indices shape strain shape strain 

(-0"170 [ 0"839 ] 
-0"982 0"010 

0"083)1 0"613 l 

(0"665 [ -0"551 ] 
-0"464 -0"853 

0"585) - 0"22#, I 

(-0"982 [ 0"010 ] 
-0"170 0"839 

0"083)i 0"613 l 

(-0"464 [ -0"853 ] 
0"665 -0"551 
0"585h - 0"224 l 

(--0"238 [ 0"662 ] 
--0"971 0"058 

0"022h 0"562 l 

(0.661 [ -0.456 ] 
- 0.358 - 0.704 

0"659)i - 0"230 l 

(-0.971 [ 0-058 ] 
--0"238 0"662 

0"022)i 0"562 l 

(-0"358 [ -0"704 ] 
0"661 -0"456 
0"659)1 - 0"230 i 

1 "04 

1 "04  

1 "04  

1 "04  

0"870 

0-870 

0"870 

0"870 

A C A30-2 
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possible invariant planes. For any one proposed lat- 
tice-invariant shear system there are therefore four 
solutions, each predicting an interface, orientation rela- 
tion and shape change. This number will be increased 
by the existence of symmetry-equivalent choices of 
shear systems. 

The choices of lattice-invariant (L.I.) shears for the 
calculations were based on the possible transformation 
twinning, and on the known modes of slip (translation 
gliding) of the product structure type. 

2.3.1 Slip modes 
The reported slip modes for the CsC1 structure 

(Rachinger & Cottrell, 1956) are the six {110} (001)w 
Three of these (set A) contain the principal strain axis 
[111111, and three (set B) do not. The two sets are: 

A, (ITO) [001],,, (OTI) [I00],,, (TOO [010]i I ; 
B, ( I I0 )  [O01]H, (011) [100],,, (I01) [OlO]i I . 

2.3.2 Transformation twinning 
Transformation twinning results from contraction 

along different (111)z principal strain axes in adjacent 
regions. Pairs of (111), in cubic cells are related by 
reflexion in {100} or {110}. In general, twin planes of 
the product are derived from such mirror planes of the 
parent. There are, therefore, two possible types. 

(a) A type derived from {110}~. The twinning shear 
systems are (121)[1T1]m (21 l) [T11],, (112) [11T]w The 
L.I. shear plane is required to cut the cone of unex- 
tended vectors. Stereograms show that these shear 
planes do not do so. This type of lattice-invariant shear 
is therefore not capable of correcting the interfacial 
misregistry. 

(b) A type derived from {100}i. Twin shears 
(110) [001]u, (011) [100]u, (101) [010]n are derived from 
(100) [011],, (01.0) [101h, (001) [110],. Because of the 
cubic symmetry of the product, this is a special case, • 
resulting in a novel example of transformation twinning 

Table 5. 2 % change of lattice parameter, lattice-invariant (L.L) shear= (110) [001]n/(100 ) [011],: NH4Br 
L.I. shear angle 

in pioduct Habit plane Direction of Magnitude of 
(parent) (°) Rotation ax i s  Rotation (o) indices shape strain shape strain 
(a) adan=l'645 (+2% in au or - 2 %  in at) 

(1) (a) 
-11.4~ [ 0.257] 31"24 (-0.455 [ 0.264] 0.477 
(26-81) 0-890 - 0.132 - 0.395 

-0"376 t 0-881h 0"038 t 

(b) 

[-0-25710.376 312, 0881 045, [_0.26410.038 
0"890 0"132h 0"395 1 

(2) (a) 
-26"81 [ 0"643] 17"55 : ( 0 " 4 5 5  [ - 0 " 2 6 4 ]  
(11"41) 0.114 - 0.132 -0"395 

-0.757 0.881h -0.038 

(b) 
[ - 0 " 6 4 3 ]  17"55 (-0"455 [0 .264 ]  

0.757 - 0.881 0.038 
0.114 l 0"132h 0.395 i 

(b) adan=l'711 ( - 2 %  in all or +2% in a0 
(1) (a) 

(28"59) 0"884 - 0"032 - 0"388 
-0"399 l 0"871)1 -0"088 I 

(b) 

0"399 - 0"871 0"088 
-0"884 I 0"032h 0"388 1 

(2) (a) 

(9"205) 0"026 -- 0"032 - 0"388 
-0"720 I 0"871h -0,088 l 

(b) [_o.°94]   0490 
0-720 - 0.871 0"088 

-0"026 i 0"032)1 0"388 l 

0-477 

0.477 

0.477 

0.486 

0.486 

0-486 

0.486 
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which would be noticeable only as surface displace- 
ments. The ' twin'  plane is a mir ror  plane also of  phase 
II,  the lattice of  which is therefore not  twinned (Fig. 
2). Nevertheless, the displacements involved are twin- 
related:  if regions of  product  produced by each of  two 
twin-related displacements are present, the net effect 
is an average shear as required. The solutions for these 
' twinning'  modes are the same as for the slip modes 
of  set B. For  each principal strain axis, e.g. [111]i, the 
different shear systems of  set A give crystallographically 
equivalent solutions, as do those of  set B. 

3. Method of analysis 
The analyses are based on the matr ix algebra method  
of  Wechsler, Liebermann & Read (1953) as restated 
by Weschsler (1959) for the generalized lattice-in- 
var iant  shear, and on the graphical  method of  Lieber- 
mann  (1958). In the graphical method the Wulff  nets 
used had  a radius of  15 cm. The mathemat ical  method  
was modified to include an additional similarity trans- 
format ion  f rom an or thonormal  basis [e.g. basis vec- 

( 1 1 2 1 1 1 
1 10) ' (1/6 1/6 1/6) (1/3 1/3 I/3)] tors 

, ]/2 2 

/ /  / 
/ i 

Fig. 3. Trans format ion  geometry  based on the latt ice-invariant 
shear (11"0) [110h. The stereogram shows initial (inner) and 
final (outer) cones of unextended vectors and some of the 
essential features of the graphical analysis. The contraction 
(strain) axis is [111]~. For a shear angle ~ - 2 0  °, vectors a 
and c in the parent (NaCI) phase undergo both the L.I. shear 
and the lattice deformation without change in magnitude or 
included angle. The analysis is completed by the rigid-body 
rotation which returns these vectors to their initial positions 
i.e. a11,c it --~a,c. The habit plane (N0 is the plane which 
contains a and e. Vectors b and d are another such pair of 
vectors (habit plane N2). The other pairs of vectors are 
1elated to a, c and b, d by reflexion in (1T0)z. These require a 
L.I. shear ,-,20 °. The corresponding solutions are crystallo- 
graphically equivalent to those based on a, e and b, d. See 
Tables 2 and 4. P2 = L.I. shear plane, d2 = L.I. shear direc- 
tion, K0=plane perpendiculm to d2 and P2. 

Fig. 4. Transformation geometry based on the lattice-invariant 
shear (001)[01lb. This stereogram shows the initial (inner) 
and final (outer) cones of unextended vectors and some of 
the essential features of the graphical analysis. The contrac- 
tion (strain) axis is [111]~. For a shear angle ,-. 10 °, vectors e 
and g undergo both the L.I. shear and the lattice deforma- 
tion without change in magnitude or included angle. The 
analysis is completed by the rigid-body rotation which 
returns these vectors to their initial positions, i.e. e 1~, g~ --.+ 
e, g. The habit plane (N~) is the plane which contains e and 
g. For a L.I. shear N27 ° vectors f and h are another such 
pair of vectors (habit plane N2). One other pair of vectors 
exists for each of the L.I. shears and can be located by 
reflexion in (0]J)x. All four solutions lead to crystallographi- 
cally equivalent results (Tables 3 and 5). P2=L.I .  shear 
plane, d2= L.I. shear direction, K0 = plane perpendicular to 
P2 and d2. 

in which the lattice deformat ion matr ix has the simple 
fo rm 

(! ° 0°) r12 
0 r/3 , 

to the usual cubic basis consisting of  unit  vectors in 
the [100]i, [01011 and [001]x directions. The entire al- 
gor i thm was then p rog rammed  in F O R T R A N  IV for 
use on a C D C  6400 computer .  All tabulated predic- 
tions in this paper  were obtained by means of  this pro-  
gram. 

4. Results 
4.1 Multiplicity o f  solutions 

Each of  the six {110} (001)n  slip systems can be 
combined with each (111)  strain axis. As there are 
four  solutions for each combinat ion there are 24 solu- 
tions per axis. For  the four  strain axes there are 96 
solutions. The mathemat ica l  solutions however are of  
three different types. Within each type there are 24 
distinct variants.  These are equivalent by symmetry but  
physically distinguishable when any combinat ion of  
them occurs. Two of  the three types are produced by 
the latt ice-invariant shear systems of  Set A. They are 
marked  (a) and (b) respectively in Tables 2 and 4. The 
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third type arises from the lattice-invariant shears of 
Set B. These when treated as slip, lead to 48 crystal- 
lographically equivalent possibilities (Tables 3 and 5). 
However, solutions which arise from the same lattice- 
invariant shear combined with different strain axes, 
which are mirror-related in the lattice-invariant shear 
plane (e.g. [111]x, [i"11]~ combined with (100) [011]0, 
have the same habit plane and shape change, and have 
orientations which are related by {110}ii mirror planes 
and are therefore also indistinguishable. The number 
of physically distinguishable solutions is thus reduced 
to 24. If the lattice-invariant shear occurs by twinning, 
the number of distinguishable variants is also 24, the 
resulting lattice being untwinned. If all three types of 
solution occurred, the maximum number of observable 
variants would be 72. 

4.2 Values 
Table 1 shows the magnitude of the strains in the 

lattice deformation. The lattice parameters are from 
P6yh6nen (1960) (NH4C1), P6yh6nen, Mansikka & 
Heiskanen (1964) (NHaBr), Hovi & Varteva (1965) 
and P6yh6nen & Ruuskanen (1964) (CsCI). The orien- 
tation relations are shown in Tables 2 and 3 by stating 
in column 5 how far the product is rotated, around the 
axis shown in column 4, from the orientation 
[111]~Jl[111]i~, (i10)~[l(T01)xx. Throughout the tables the 
contraction axis of the pure strain is indexed as [111]. 
Directions are stated as indices with fractional values. 
For convenience in initial experimental observations 
the approximate orientations of the habit planes may 
be noticed. They are 5 ° from {310}~, 10 ° from {Tll} 
(Table 2) and 5 ° from {210}~ (Table 3). Tables 4 and 
5 which show the effect of a + 2 % uniform dilatation 
in the interface in either phase, would also apply to 
substances in which the ratio of the lattice parameters 
differs within 2 % from the values in Tables 2 and 3. 
Transformation geometries are illustrated in Figs. 3 
and 4, and orientation relations in Figs. 5, 6 and 7. 

5. Discussion 

x hkl phaseT 
o hkl phase Tr 

Noteworthy features of the predictions are the large 
shape changes, the large number of variants, and the 
large differences between the orientation relations and 
the relation corresponding to the pure strain alone. 

As an example of predicted shape change, solutions 
l(a) and 2(a) of Table 2 imply that an initially cubic 
volume of crystal would change its interedge angles 
from 90 to 95, 118 and 117 ° approximately. Edge 
lengths would change by - 1 5 ,  + 34 and +3  %. The 
shape changes of Table 3 are less severe, but still large: 
interedge angles change from 90 to 79, 79 and 109 ° 
whilst edge lengths change by - 11, + 3 and + 3%. As 
the three different types of solution imply different dis- 
placements, it may be anticipated that only one type 
would correspond to the physical mechanism under 
particular conditions. Up to 24 variants would then 
be obtained. 

For a given lattice deformation and lattice-invariant 
shear, the prcdictions depend only upon the ratio 
ax:aH. Because this ratio is very similar for all the sub- 
stances treated in this work, orientations and shape 
strains are also very similar. The main effect of a 2 % 

I 

o hkl phose I I  

Fig. 5. Orientation relations" type 1. This O.R. is associated 
with solution I(a)-NH4Br of Table 2. Angles between 
rational poles or directions are listed here. Bracketed values 
refer to the corresponding solutions l(a) of Table 4, with 
aJa~=l.645 and 1"711 respectively: (001)l^(1T1)n=2-24 ° 
(3"77 °, 0"83°), (100)~A(10T)n=9"02 ° (5"93 °, 12"7°), (ll0)~A 
(110)H = 6"40 ° (10-68 °, 2"70°), [11 lhA[111]~ = 35-25 ° (38-04 °, 
32"49°). Solution l(a)-CsCl of Table 2 predicts the fol- 
lowing angles: (001)~A(l]'l)~ = 2-35 °, (100)~A(101-)n = 8-75 °, 
(110)iA(110)n = 6"55 °, [111]xA[11 l]n = 35"46 °. 
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Fig. 6. Orientation relations: type 2. This O.R. is associated 
with solution I(b)-NHaBr of Table 2. Bracketed values of 
angles apply to the corresponding solutions l(b) of Table 4 
with ax/aH = 1.645 and 1-711 respectively: (110)~A(010)n = 
3-55 ° (2-90 °, 4.30°), (li'l)~A(100)n=0"32 ° (0-42 °, 0"10°), 
[lll]~A[lll],x= 19"06 ° (19"44 °, 18-56°). Solution l(b)-CsC1 
of Table 2 predicts the following angles: (ll0)~A(010)n= 
3"45 °, (1T1)l^(100)n =0-45 °, [111]lA[111]n = 19"09 °. 
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relative dilation of one phase is to rotate one of the 
sets of orientation relations by 4 ° . 

The calculations should similarly apply to transfor- 
mations at both normal and high pressures. Whilst 
values of lattice parameters at the transformation pres- 
sure Ptr are available only for one phase, available data 
suggest that the ratio a i :a  n is close to that at atmos- 
pheric pressure. For example with the lattice param- 
eters given by Evdokimova & Vereshchagin (1962) the 
ratios ai(atmospheric pressure)/an(transformation 
pressure) for RbC1 and RbI respectively are 1.717 and 
1.687. Since a I will be smaller at higher pressure, the 
ratios will tend towards the lower value in the Tables, 
1.675. 

No explicit allowance for the presence of charged 
ions in the structure seems necessary, for these centro- 
symmetric structures do not introduce problems of 
electrically polarized domains as in the ferroelectrics, 
and the twinning systems used do not introduce the 
relatively high-energy { 111 } stacking faults. 

The experimental data available for comparison are 
mainly orientation relations. However, Livshitz et al. 
(1969) reported lamellar, possibly martensitic, mor- 
phology produced in the pressure-induced transforma- 
tions NaC1 -+ CsC1 --+ NaCl-type in KC1; and Fraser 
& Kennedy (1972) observed regular shape changes in- 
duced by the transformation NaCl-type--+ CsCl-type 
in plate-like crystals of NH4Br measuring 50 × 50 × 5 
/lm. The interedge angles of some fully transformed 
regions became 80 and 82 + 3 ° in different specimens. 
Current work reveals oriented platelets. The several 
orientations of traces already measured are consistent 

o hk..~l phase 1T 

Fig. 7. Orientation relations: type 3. This O.R. is associated 
with solution 2(a)-NH4Br of Table 3. The two bracketed 
values of angles in the following list apply to the corre- 
sponding solution 2(a) of Table 5 with a~/an=1"645 and 
1"711 respectively: (101)i^(211)1i=1"68 ° (2"67 °, 0"65°), 
(010)lA(T11)n=l.27 ° (1.92 °, 0.53°), [11l]lA[111]u=16"95 ° 
(16.27 °, 17.52°). Solution 2(a)-CsC1 of Table3 predicts the 
following angles: (101)~^(211)n = 1 "95 °, (010)I^(T11)n = l "58 °, 
[111]lA[111]n = 17"00 °. 

with the predicted habit planes. In orientation data, 
allowance must be made for lack of precision due to 
plastic deformation in X-ray specimens, and to the 
difficulty of fixing precise orientation in electron dif- 
fraction. An orientation approximating to the type 
{100}~[l{ll0}t,, (010>,ll(]'l 1 >ii was reported by Fraser 
& Kennedy (1972) for NH4Br, and suggested as pos- 
sible by P6yh6nen, Jaakkola & R/isanen (1964) and 
Chatterji, Mackay & Jeffery (1970) for CsCI. The 
sets of solutions 1 (a) and 2(a) of Tables 2 and 4 can 
account for this relation. Lfidemann (1957), studying 
epitaxically grown films of CsCI by electron diffrac- 
tion, found that they transformed from the NaC1 struc- 
ture maintaining (001)~l[(1 ll)li, [T10]I or [ll0]lll[ll2]n- 
This is very close to the type of relation predicted in 
Table 3. The calculations therefore predict most ob- 
served orientations within experimental error. There 
is, however, another relation, which approximates to 
{100}ill{100}., <010>iIl(101>,l observed by Fraser & 
Kennedy (1972) and again suggested as a possibility 
by P6yh6nen et al. (1964) and Chatterji et al. (1970). 
Kennedy, Patterson, Chaplin & Mackay (1974) have 
observed this type of relation in the reverse transforma- 
tion and have suggested how it might arise as a sec- 
ondary orientation through stacking of twins due to 
symmetry options, but no very close approximation 
due to stacking of variants is apparent from the present 
work. An explanation of this remaining relation might 
be sought either in another lattice-invariant shear sys- 
tem, or in another mechanism plobably involving an 
alternative lattice correspondence. 

In experiments, the product might sometimes appear 
polycrystalline if a large number of the variants occur 
within a parent crystal. Additional nucleation centres 
might be activated by stresses due to the variant formed 
first. This large number of possible variants would ac- 
count for the difficulty found in earlier experimental 
studies in defining specific relations, and for the reports 
of polycrystalline products (Menary, Ubbelohde & 
Woodward, 1951). 

The large shape change might autocatalyse forma- 
tion of specific further variants which, in combination 
with the first, would reduce the resulting strains and 
stresses. Stacking of sets of variants which have dif- 
ferent shape strains could reduce the total shape change 
of the specimen. In contrast, random juxtaposition of 
variants would cause stresses which could cause plastic 
deformation subsequent to the transformation, and 
possible fracture. 

The work was supported by the Australian Research 
Grants Committee. 
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Structural Studies by High-Resolution Electron Microscopy: Tetragonal Tungsten Bronze- 
Type Structures in the System NbzOs---WO3 
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The contrast in many-beam lattice images from very thin crystals of 4Nb2Os. 9WO3 is shown to be 
directly related to its known structure. On the basis of this correlation, the structure of 2Nb205.7WO3 
is derived from the observed image contrast; it is an ordered intergrowth of the ReOa and tetragonal 
tungsten bronze structural types. The structures of typical fault boundaries and disordered intergrowths 
are described, and those of the reported compounds 6Nb2Os. 1 lWO3 and 3Nb205.8WOa are discussed. 

1. Introduction 

The binary system Nb2Os-WO3 has been the subject 
of a great deal of structural investigation during recent 

years, and at least ten distinct phases have been recog- 
nized by X-ray methods (Roth & Waring, 1966). The 
dominant structural unit in all these phases is the MO6 
octahedron, which, in general, shares its corner oxygen 
atoms with neighbours to build up a three-dimensional 
lattice. In one crystallographic direction through the 
structures, the octahedra always form linear strings, 
with a simple repeat distance of about 0.38 nm, corre- 
sponding to the length of a body diagonal. Differences 

* On leave from the Research Institute for Scientific Meas- 
urements, Tohoku University, Sendai, Japan, 

between the structures arise from variations in the ar- 
rangement of octahedra in the remaining two direc- 
tions, and two major structural types can be distin- 
guished: 

(a) Crystallographic shear (CS) structures, in which 
the octahedra are joined as in ReO3 [Fig. l(a)], into 
blocks or slabs, and neighbouring slabs are joined by 
sharing octahedral edges rather than corners. This de- 
scription applies to the Magn61i phases (>  90 mole % 
WO3), and to the Nb2Os-type of block structures (<  48 
mole % WO3). 

(b) Tunnel structures, in which the octahedra are 
joined in a more complex way, leaving tunnels of var- 
ious shapes, some of which may be filled by additional 
ions. These include WNb208, and several structures 
containing 64-78 mole % WO3, which share a common 


